The Resurgence of Reference Quality Genomes Michael Schatz

April 9, 2015 UMN-MSI: Advances in Genome Assembly

Outline

- I. Assembly Fundamentals
- 2. PacBio Sequencing of Rice
- 3. Oxford Nanopore Sequencing of Yeast

Outline

- I. Assembly Fundamentals Thanks Jason!
- 2. PacBio Sequencing of Rice and Human Cancer
- 3. Oxford Nanopore Sequencing of Yeast

......

ARTICLES

The map-based sequence of the rice genome

International Rice Genome Sequencing Project"

Riss, one of the world and is a model plant 5 389 Mb genome, inclutransposable-alement Arabitipals, in a recipprotectes. Twenty-risclasses of transposable makes and acrylium pmultur chromosomes traits. The additional saccelerate improvement

Ov	Sequenced tasks (bp)	Gaps No.	se ann regions Longth (Mb)	Telomeric gaps* (Mb)	Certrometic gapt (MS)	(ONA) (Mb)	Totel (Mb)	Coverage® (NO
1	43,260,640	5	0.33	0.06	1.40		45.05	993
2	35,954,074	3	0.10	0.01	0.72		36.78	99.7
3	36,189,985	- 4	0.96	0.04	0.18		37.37	97.3
4	35.489.479	3	0.46	0.20			36.15	98.7
5	29,733,236	6	0.22	0.05			30.00	99.3
6.	30,731,386	1	0.02	0.03	0.82		31.60	99.8
7.	29.643,843	1	0.0	0.01	0.32		30.28	98.9
8	28,434,680	1	0.09	0.05			28.57	997
9	22,692,709	-4	0.13	0.14	0.62	6.95	30.53	98.8
10	22,683,701	- 4	0.68	0.13	0.47		23.96	96.6
数し	28,357,783	4	0.21	0.04	1.90	0.25	30.76	99.1
12	27,561,960	0	0.00	0.05	0.16		27.77	99.8
AS .	370.733,456	36	3.51	0.91	6.59	7.20	388.82	98.9

Contig N50: 5.1Mbp Total projects costs: >\$100M

Initial Assembly Attempts with early Illumina sequencers circa 2007-2008

(older illumina PE76 library with small insert size ~150bp)

*****		NOTIONING NOT	Main contrag taken	Table according time
Vehiet	25X Npportare	104960	21833ko	325.8 Mbr
Veteral	SCX Apportune	41100	23095kg	401.6 Mbp
Abyse	25X Npporbare	185360	136Mite	288.4 Mbp
Altyte	SCX Neportare	294799	3488396	317.4 Mp

Total costs: ~\$10k >1,000x times cheaper, but at what cost scientifically?

W.R. McCombie

Population structure of Oryza sativa

Indica

Total Span: 344.3 Mbp Contig N50: 22.2kbp

Aus

Total Span: 344.9Mbp Contig N50: 25.5kbp

Nipponbare

Total Span: 354.9Mbp Contig N50: 21.9kbp

Whole genome de novo assemblies of three divergent strains of rice (O. sativa) documents novel gene space of aus and indica Schatz, Maron, Stein et al (2014) Genome Biology. 15:506 doi:10.1186/s13059-014-0506-z

Oryza sativa Gene Diversity

- Very high quality representation of the "gene-space"
 - Overall identity ~99.9%
 - Less than 1% of exonic bases missing
- Genome-specific genes enriched for disease resistance
 - Reflects their geographic and environmental diversity
- Assemblies fragmented at (high copy) repeats
 - Difficult to identify full length gene models and regulatory features

Overall sequence content

In each sector, the top number is the total number of base pairs, the middle number is the number of exonic bases, and the bottom is the gene count. If a gene is partially shared, it is assigned to the sector with the most exonic bases.

PacBio SMRT Sequencing

Imaging of fluorescently phospholinked labeled nucleotides as they are incorporated by a polymerase anchored to a Zero-Mode Waveguide (ZMW).

Time

http://www.pacificbiosciences.com/assets/files/pacbio_technology_backgrounder.pdf

Single Molecule Sequences

"Corrective Lens" for Sequencing

Consensus Accuracy and Coverage

Coverage can overcome random errors

- Dashed: error model from binomial sampling
- Solid: observed accuracy

Koren, Schatz, et al (2012) Nature Biotechnology. 30:693–700

$$CNS Error = \sum_{i=\lceil c/2 \rceil}^{c} \binom{c}{i} (e)^{i} (1-e)^{n-i}$$

PacBio Assembly Algorithms

PBJelly	PacBioToCA & ECTools	HGAP & Quiver
		$\frac{Pr(\mathbf{R} \mid T)}{Pr(\mathbf{R} \mid T) = \prod_{k} Pr(R_k \mid T)}$ $\frac{\mathbf{f}_k = \mathbf{f}_k = \mathbf$
Gap Filling and Assembly Upgrade	Hybrid/PB-only Error Correction	PB-only Correction & Polishing
English et al (2012)	Koren, Schatz, et al (2012)	Chin et al (2013)
PLOS One. 7(11): e47768	Nature Biotechnology. 30:693–700	Nature Methods. 10:563–569

< 5x

PacBio Coverage

> 50x

O. sativa pv Indica (IR64)

PacBio RS II sequencing at PacBio

 Size selection using an 10 Kb elution window on a BluePippin[™] device from Sage Science

O. sativa pv Indica (IR64)

Genome size: ~370 Mb Chromosome N50: ~29.7 Mbp

Assembly	Contig					
	NG50			HGAP F	Read Le	ngths
MiSeq Fragments 25x 456bp (3 runs 2x300 @ 450 FLASH)	I9 kbp	au o		Max: 22.7x (disca	53,652 over 10 rded re	bp kbp ads
"ALLPATHS-recipe" 50x 2x100bp @ 180 36x 2x50bp @ 2100 51x 2x50bp @ 4800	I8 kbp	0000		Derov	V 0500D	י <i>קי</i>
HGAP + CA 22.7x @ 10kbp	4.0 Mbp					
Nipponbare BAC-by-BAC Assembly	5.1 Mbp	190900	23000	30000	43008	50000

S5 Hybrid Sterility Locus

Sanger	ACCCTGATATTCTGAGTTACAAGGCATTCAGCTACTGCTTGCCCACTGACGAGACC
Illumina	ACCCTGATATTCTGAGTTACAAGGCATT <mark>C</mark> AGCTACTGCTTGCCCACTGACGAGACC
PacBio	ACCCTGATATTCTGAGTTACAAGGCATTCAGCTACTGCTTGCCCACTGACGAGACC

S5 is a major locus for hybrid sterility in rice that affects embryo sac fertility.

- Genetic analysis of the S5 locus documented three alleles: an indica (S5-i), a japonica (S5-j), and a neutral allele (S5-n)
- Hybrids of genotype S5-i/S5-j are mostly sterile, whereas hybrids of genotypes consisting of S5-n with either S5-i or S5-j are mostly fertile.
- Contains three tightly linked genes that work together in a 'killer-protector'-type system: ORF3, ORF4, ORF5
- The ORF5 indica (ORF5+) and japonica (ORF5-) alleles differ by only two nucleotides

S5 Hybrid Sterility Locus

Sanger Illumina PacBio

...ACCCTGATATTCTGAGTTACAAGGCATTCAGCTACTGCTTGCCCACTGACGAGACC... ...ACCCTGATATTCTGAGTTACAAGGCATTCAGCTACTGCTTGCCCACTGACGAGACC... ...ACCCTGATATTCTGAGTTACAAGGCATTCAGCTACTGCTTGCCCCACTGACGAGACC...

S5 Hybrid Sterility Locus

Sanger Illumina PacBio

...ACCCTGATATTCTGAGTTACAAGGCATTCAGCTACTGCTTGCCCACTGACGAGACC... ...ACCCTGATATTCTGAGTTACAAGGCATTCAGCTACTGCTTGCCCACTGACGAGACC... ...ACCCTGATATTCTGAGTTACAAGGCATTCAGCTACTGCTTGCCCCACTGACGAGACC...

Improvements from 20kbp to 4Mbp contig N50:

- Over 20 Megabases of additional sequence
 - Extremely high sequence identity (>99.9%)
 - Thousands of gaps filled, hundreds of mis-assemblies corrected
- Complete gene models, promoter regions for nearly every gene
 - True representation of transposons and other complex features
- Opportunities for studying large scale chromosome evolution
 - Largest contigs approach complete chromosome arms

Current Collaborations

Current Collaborations

Long Read Sequencing of SK-BR-3

⁽Wen-Sheng et al, 2009)

(Navin et al, 2011)

Long read PacBio sequencing of SK-BR-3 breast cancer cell line

- Her2+ breast cancer is one of the most deadly forms of the disease
- SK-BR-3 is one of the most important models, known to have widespread CNVs
- Currently have 72x coverage with long read PacBio sequencing (mean: ~10kbp)
- Analyzing breakpoints in an attempt to infer the mutation history, especially around HER2 In collaboration with McCombie (CSHL) and McPherson (OICR) labs

Structural variant discovery with long reads

- **1. Alignment-based split read analysis: Efficient capture of most events** BWA-MEM + Lumpy
- 2. Local assembly of regions of interest: In-depth analysis with *base-pair precision* Localized HGAP + Celera Assembler + MUMmer
- **3. Whole genome assembly: In-depth analysis including** *novel sequences* **DNAnexus-enabled version of Falcon**

Total Assembly: 2.64GbpContig N50: 2.56 MbpMax Contig: 23.5Mbp

Improving SMRTcell Performance

PacBio read length distribution

Genome-wide alignment coverage

Genome-wide coverage averages around 54X Coverage per chromosome varies greatly as expected from previous karyotyping results

Confirmed both known gene fusions in this region

Confirmed both known gene fusions in this region

Joint coverage and breakpoint analysis to discover underlying events

Cancer lesion Reconstruction

By comparing the proportion of reads that are spanning or split at breakpoints we can begin to infer the history of the genetic lesions.

- 1. Healthy diploid genome
- 2. Original translocation into chromosome 8
- 3. Duplication, inversion, and inverted duplication within chromosome 8
- 4. Final duplication from within chromosome 8

Cancer lesion Reconstruction

Available today under the Toronto Agreement:

- Fastq & BAM files of aligned reads
- Interactive Coverage Analysis with BAM.IOBIO
- Whole genome assembly

Available soon

- Whole genome methylation analysis
- Full length cDNA transciptome analysis
- Comparison to single cell analysis of >100 individual cells

http://schatzlab.cshl.edu/skbr3

4. Final duplication from within chromosome 8

What should we expect from an assembly?

The resurgence of reference quality genomes

Caveats

Model only as good as the available references (esp. haploid sequences) Technologies are quickly improving, exciting new scaffolding technologies

Oxford Nanopore MinION

- Thumb drive sized sequencer
 powered over USB
- Capacity for 512 reads at once
- Senses DNA by measuring changes to ion flow

Nanopore Sequencing

Nanopore Sequencing

Basecalling currently performed at Amazon with frequent updates to algorithm

Nanopore Alignments Mean: 6903bp 1500 13.8x over 10kbp 1000

Alignment Quality (BLASTN) Of reads that align, average ~64% identity

Nanopore Accuracy

Alignment Quality (BLASTN)

Of reads that align, average ~64% identity "2D base-calling" improves to ~70% identity

NanoCorr: Nanopore-Illumina Hybrid Error Correction

https://github.com/jgurtowski/nanocorr

- I. BLAST Miseq reads to all raw Oxford Nanopore reads
- 2. Select non-repetitive alignments
 - First pass scans to remove "contained" alignments
 - Second pass uses Dynamic Programming (LIS) to select set of highidentity alignments with minimal overlaps
- 3. Compute consensus of each Oxford Nanopore read
 - State machine of most commonly observed base at each position in read

Oxford Nanopore Sequencing and de novo Assembly of a Eukaryotic Genome

Goodwin, S, Gurtowski, J et al. (2015) bioRxiv doi: http://dx.doi.org/10.1101/013490

NanoCorr Yeast Assembly

S288C Reference sequence

• 12.1Mbp; 16 chromo + mitochondria; N50: 924kbp

NanoCorr E. coli KI2 Assembly

Nanocor Correction Results 145x Oxford Nanopore X 35x MiSeq

Percent Identity

Single Contig Assembly

99.99% Identity (Pilon polishing)

A reference bacterial genome dataset generated on the MinION™ Sequencing Data From: portable single-molecule nanopore sequencer Joshua Quick, Aaron R Quinlan and Nicholas J Loman

Genomic Futures?

Genomic Futures?

iGenomics: Mobile Sequence Analysis

Aspyn Palatnick, Elodie Ghedin, Michael Schatz

			(ili)	i di la	ЫÙ		l in	ii i
Ξ	gi(3	8327973	9/gb[CY11	4380.1	Seg	ment Le	n: 2312	×
		-		1,310				(0,39)
ov_		-		0	-	-	$b_{ij} = b_{ij}$	
Ref	G	С	A	Т	С	A	G	С
Jry	G	С	A	C	С	A	G	С
2	1	105	105	108	107	100		105
G 1	rh.	100		199	Summa	rv		100
	all229783381/abiCY039695.1/							
-	Pos	: 825 R	ef: C Mu	t: T				
•	resistance to the neuraminidase inhibitors							
	Pros: 773 Pier: 1 MUE G resistance to the adamantanee							
	Pos: 785 Ref: C Mut: A							
	Pos: 785 Ref: C Mut: A							

The worlds first genomics analysis app for iOS devices

BWT + Dynamic Programming + UI

First application:

- Handheld diagnostics and therapeutic recommendations for influenza infections
- In the iOS AppStore now!

Future applications

- Pathogen detection
- Food safety
- Biomarkers
- etc..

Summary & Recommendations

Reference quality genome assembly is here

- Use the longest possible reads for the analysis
- Don't fear the error rate, coverage and algorithmics conquer most problems

Megabase N50 improves the analysis in every dimension

- Better resolution of genes and flanking regulatory regions
- Better resolution of transposons and other complex sequences
- Better resolution of chromosome organization
- Better sequence for all downstream analysis

The year 2015 will mark the return to reference quality genome sequence

Acknowledgements

Schatz Lab

Rahul Amin **Eric Biggers** Han Fang Tyler Gavin James Gurtowski Ke Jiang Hayan Lee 7ak Lemmon Shoshana Marcus Giuseppe Narzisi Maria Nattestad Aspyn Palatnick Srividya Ramakrishnan Fritz Sedlazeck **Rachel Sherman Greg Vurture Alejandro Wences**

CSHL

Hannon I ab

Gingeras Lab

Jackson Lab

Tossifov Lab

Lippman Lab

Martienssen Lab

McCombie Lab

Tuveson Lab

Ware Lab

Wigler Lab

Hicks Lab

Levy Lab

Lvon Lab

Cornell

Susan McCouch Lyza Maron Mark Wright

OICR

John McPherson Karen Ng **Timothy Beck** Yogi Sundaravadanam

NBACC

Adam Phillippy Serge Koren

SFARI SIMONS FOUNDATION AUTISM RESEARCH INITIATIVE

OUNDATION

Thank you http://schatzlab.cshl.edu @mike_schatz